
 1 

Empirical examination of the replicability of associations between brain structure and 1 

psychological variables  2 

Shahrzad Kharabian Masouleh
1,2

, Simon B. Eickhoff
1,2

, Felix Hoffstaedter
1,2

 and Sarah 3 

Genon
1,2

, for the Alzheimer’s Disease Neuroimaging Initiative* 4 

1
Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre 5 
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Abstract 38 

Linking interindividual differences in psychological phenotype to variations in brain structure 39 

is an old dream for psychology and a crucial question for cognitive neurosciences. Yet, 40 

replicability of the previously-reported “structural brain behavior” (SBB)-associations has 41 

been questioned, recently. Here, we conducted an empirical investigation, assessing 42 

replicability of SBB among heathy adults. For a wide range of psychological measures, the 43 

replicability of associations with gray matter volume was assessed. Our results revealed that 44 

among healthy individuals 1) finding an association between performance at standard 45 

psychological tests and brain morphology is relatively unlikely 2) significant associations, 46 

found using an exploratory approach, have overestimated effect sizes and 3) can hardly be 47 

replicated in an independent sample. After considering factors such as sample size and 48 

comparing our findings with more replicable SBB-associations in a clinical cohort and 49 

replicable associations between brain structure and non-psychological phenotype, we discuss 50 

the potential causes and consequences of these findings. 51 
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 60 
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Introduction:  62 

The early observations of inter-individual variability in human psychological skills and traits 63 

have triggered the search for defining their correlating brain characteristics. Studies using in-64 

vivo neuroimaging have provided compelling evidence of a relationship between human skills 65 

and traits and brain morphometry that were further influenced by individuals’ years of 66 

experience, as well as level of expertise. More subtle changes were also shown following new 67 

learning/training (Draganski et al., 2004; Taubert et al., 2011), hence further demonstrating 68 

dynamic relationships between behavioral performance and brain structural features. Such 69 

observations quickly generated a conceptual basis for growing number of studies aiming to 70 

map subtle inter-individual differences in observed behavior such as personality traits (Nostro 71 

et al., 2017), impulsivity traits (Matsuo et al., 2009) or political orientation (Kanai et al., 72 

2011); to normal variations in brain morphology (for review see (Genon et al., 2018; Kanai 73 

and Rees, 2011)). Altogether, these studies created an empirical background supporting the 74 

assumption that the morphometry of the brain in humans is related to the wide spectrum of 75 

aspects observed in human behavior. Such reports on structural brain behavior (SBB) 76 

associations may not only have important implications in psychological sciences and clinical 77 

research (Ismaylova et al., 2018; Kim et al., 2015; Luders et al., 2013, 2012; McEwen et al., 78 

2016), but also possibly hold an important key for our understanding of brain functions 79 

(Genon et al., 2018) and thus concern many research fields including basic cognitive 80 

neuroscience.   81 

Yet, along with the general replication crisis affecting psychological sciences (Button et al., 82 

2013; De Boeck and Jeon, 2018; Open Science Collaboration, 2015), replicability of the 83 

previously reported SBB-associations were also questioned recently. In particular, Boekel et 84 

al. (2015) in a purely confirmatory replication study, picked on few specific previously 85 
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reported SBB-associations. Strikingly, for almost all the findings under scrutiny, they could 86 

not find support for the original results in their replication attempt.  87 

In another study we demonstrated lack of robustness of the pattern of correlations between 88 

cognitive performance and measures of gray matter volume (GMV) in a-priori defined sub-89 

regions of the dorsal premotor cortex in two samples of healthy adults (Genon et al., 2017). In 90 

particular we found a considerable number of SBB-associations that were counterintuitive in 91 

their directions (i.e., higher performance related to lower gray matter volume). Furthermore, 92 

subsampling revealed that for a given psychological score, negative correlations with GMV 93 

were as likely as positive correlations. Although our study did not primarily aim to address 94 

the scientific qualities of SBB, it revealed, in line with Boekel et al. (2015), that a replication 95 

issue in SBB-associations could seriously be considered. However, ringing the warning bell 96 

of a replication crisis would be premature since these previous studies have approached 97 

replicability questions within very specific contexts and methods and using small sample 98 

sizes (Muhlert and Ridgway, 2016). 99 

In particular, Boekel et al. and Genon et al.’s studies were performed by focusing on a-priori 100 

defined regions-of-interest (ROIs). However, several SBB studies are commonly performed 101 

in groups of dozens of individuals, using an exploratory setting employing a mass-univariate 102 

approach. Thus, the null findings of the two questioning studies could be related to the focus 103 

and averaging of GMV within specific region-of-interests as suggested by (Kanai, 2016) and 104 

discussed in (Genon et al., 2017). 105 

In stark contrast with this argument, in whole-brain mass-univariate exploratory SBB studies, 106 

the multitude of statistical tests that is performed (as the associations are tested for each voxel, 107 

separately) likely yield many false positives. Directly addressing this limitation, several 108 

strategies for multiple comparison correction have been proposed to control the rate of false 109 

positives (Eklund et al., 2016). We could hence assume that the high number of multiple tests 110 
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and general low power of neuroimaging studies combined with the flexible analysis choices 111 

(Button et al., 2013; Poldrack et al., 2017; Turner et al., 2018) represent critical factors likely 112 

to lead to the detection of spurious and not replicable associations.  113 

Characterization of spatial consistency of findings across neuroimaging studies is often 114 

performed with meta-analytic approaches, pooling studies investigating similar neuroimaging 115 

markers in relation to a given behavioral function or condition. However, in the case of SBB, 116 

the heterogeneity of the behavioral measures and the large proportion of apriori-ROI analyses 117 

complicate the application of a meta-analytic approach. Illustrating these limitations, previous 118 

meta-analyses have focused on specific brain regions and capitalized on a vast majority of 119 

ROI studies. For example, (Yuan and Raz, 2014) have focused on SBB within the frontal lobe 120 

based on a sample made of  approximately 80% of ROI studies. Given these limitations of 121 

meta-analytic approaches for the SBB literature, an empirical evaluation of the replicability of 122 

the findings yielded by an exploratory approach is crucially needed to allow questioning the 123 

replicability of exploratory SBB studies.  124 

Thus in the current study, we empirically examined replicability rates of SBB-association 125 

over a broad range of psychological scores, among heathy adults. In order to avoid the 126 

criticisms raised regarding the low sample size in Boekel et al.’s study, we used an openly 127 

available dataset of a large cohort of healthy participants and assessed replication rate of 128 

SBB-associations using both an exploratory as well as a confirmatory approach. While in the 129 

recent years multivariate methods are frequently recommended to explore the relationship 130 

between brain and behavior (Cremers et al., 2017; Smith and Nichols, 2018), SBB-association 131 

studies using these approaches remain in minority. The mass-univariate approach is still the 132 

main workhorse tool in such studies, not only due to its historical precedence and its wide 133 

integration in common neuroimaging tools, but also possibly owing to more straightforward 134 

interpretability of the detected effects (Smith and Nichols, 2018). The current study, therefore, 135 

focused on the assessment of replicability of SBB-associations using the latter approach.  136 
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In particular, we first identified “significant” findings with an exploratory approach based on 137 

mass-univariate analysis, searching for associations of GMV with psychometric variables 138 

across the whole brain. Here a linear model was fit between inter-individual variability in the 139 

psychological score and GMV at each voxel. Inference was then made at cluster level, using a 140 

threshold-free cluster enhancement approach (Smith and Nichols, 2009). We then investigated 141 

the reproducibility of these findings, across resampling, by conducting a similar whole-brain 142 

voxel-wise exploratory analysis within 100 randomly generated subsamples of individuals 143 

(discovery samples). Each of these 100 discovery subsamples (of the same size) were 144 

generated by randomly selecting apriori-defined number of individuals (e.g. 70% ) from the 145 

original cohort under study. In order to empirically investigate spatial consistency of 146 

significant results from these 100 exploratory analyses, an aggregate map characterizing the 147 

spatial overlap of the significant findings across all discovery samples was generated. This 148 

map denotes the frequency of finding a significant association between the behavioral score 149 

and gray matter volume, at each voxel, over 100 analyses and thus provides information about 150 

replicability of “whole brain exploratory SBB-associations” for each behavioral score. 151 

Conceptually, this map gives an estimate of the spatial consistency of the results that one 152 

could expect after re-running 100 times the same SBB study across similar samples.  153 

Additionally, for each of the 100 exploratory analyses, we assessed the replicability of SBB-154 

associations using a confirmatory approach (i.e. ROI-based approach). For each of the 100 155 

discovery samples, we generated a demographically-matched test pair sample from the 156 

remaining participants of the main cohort. Average GMV within regions showing significant 157 

SBB-association in the initial exploratory analysis, i.e. ROIs, are calculated among the 158 

demographically-matched independent sample and their association with the same 159 

psychological score was compared between the discovery and matched-replication sub-160 

samples (see Methods for more details).  161 
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Confirmatory replication is commonly used in the literature (Boekel et al., 2015; Genon et al., 162 

2017; Open Science Collaboration, 2015), nevertheless, there is no single standard defined for 163 

evaluating the replication success. Therefore, here, we assessed the replication rate of SBB, 164 

for three different definitions of successful replication in the confirmatory analyses: 1- 165 

Successful replication of the direction of association, only; 2- Detection of significant (p < 166 

0.05) association in the same direction as the exploratory results; While the first definition is 167 

arguably too lenient and may result in many very small correlation coefficients defined as 168 

successful replication, it is frequently used as a qualitative measure of replication and may be 169 

used to characterize the possible inconsistency of the direction of associations (that was 170 

observed in our previous study (Genon et al., 2017)). In addition it could be used as a 171 

complement for the possible limitation of the second definition, namely the possibility of 172 

declaring many replications that fell just short of the bright-line of p< 0.05 as failed 173 

replication. 3- lastly, in line with previous studies and the reproducibility literature, we 174 

included the Bayes Factors (BF) to quantify evidence that the replication sample provided in 175 

favor of existence or absence of association in the same direction than in the discovery 176 

subsample (Boekel et al., 2015). In other words, when compared to standard p-value 177 

methodology, here hypothesis testing using BF enables quantification of the evidence in favor 178 

of the null hypothesis, i.e. evidence for the absence of a correlation; see Methods for more 179 

details. 180 

If the replication issue of SBB associations can be objectively evidenced, this naturally opens 181 

the questions of the accounting factors. Here, we considered proximal explanatory factors, in 182 

particular at the measurements and analysis level, but also in relation to the object level, that 183 

is, in relation to the nature itself of variations in brain structure and psychometric scores in 184 

healthy individuals. One main proximal factor that is almost systematically blamed is small 185 

sample size. In line with replication studies in other fields (e.g. (Cremers, Wager, & Yarkoni, 186 

2017; Turner, Paul, Miller, & Barbey, 2018)), we thus here investigated the influence of 187 
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sample size and replication power on the reproducibility of SBB-associations. More 188 

specifically for every phenotypic score under study we repeated both whole brain exploratory 189 

and ROI-based confirmatory replication analyses using three sample sizes (see Methods for 190 

more details) to assess how sample size influences replication rate of SBB. Furthermore, for 191 

the successfully replicated effects, we also investigated existence of a positive relationship 192 

between the effect size of exploratory and confirmatory analyses.  193 

Finally, in order to promote discussion on the underlying reality which is aimed to be 194 

captured by SBB in the framework of the psychology of individual differences, we included 195 

as benchmarks non-psychological phenotypical measures, i.e. age and body-mass-index 196 

(BMI), and extended our analysis to a clinical sample, where SBB-associations are expected 197 

to enjoy higher biological validity. For this purpose, a subsample of patients drawn from 198 

Alzheimer's Disease Neuroimaging Initiative (ADNI) database were selected, in which 199 

replicability of structural associations of immediate-recall score from Rey auditory verbal 200 

learning task (RAVLT) (Schmidt, 1996) was assessed (see Methods). Due to availability of 201 

the same score within the healthy cohort, this later analysis is used as a “conceptual” 202 

benchmark. 203 
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Results: 204 

A total of 10800 exploratory whole brain SBB associations (each with 1000 permutations) 205 

were tested to empirically identify the replicability of the associations of 36 psychological 206 

scores with GMV over 100 splits in independent matched subsamples, at three pre-defined 207 

sample sizes, within the healthy cohort; see Supplementary Table 1, for total number of 208 

participants with available score for each of the psychological scores.  209 

Altogether, in contrast to GMV-associations with age and BMI, significant SBB-associations 210 

were highly unlikely. For the majority of the tested psychological variables no significant 211 

association with GMV were found in more than 90% of the whole brain analyses.  212 

SBB-associations among the healthy population: 213 

Replicability of “whole brain exploratory SBB-associations”: 214 

Age and BMI structural associations: Voxel-wise associations of age and BMI with GMV, as 215 

suggested by previous studies (Fjell et al., 2014; Kharabian Masouleh et al., 2016; Salat et al., 216 

2004; Willette and Kapogiannis, 2014), were widespread and strong.  217 

Despite using more stringent thresholds, compared to the threshold used for the psychological 218 

scores (see Methods), for almost all subsamples, we found highly consistent widespread 219 

negative associations of GMV with age. See figure 1A for aggregate maps of spatial overlap 220 

of exploratory findings and density plots, summarizing distribution of “frequency of 221 

significant findings” within each map.  222 

When decreasing the sample size of the discovery cohort, the spatial overlap of significant 223 

findings over 100 splits decreased. More specifically, for the discovery sample of 326 224 

subjects, more than half of the significant voxels were consistently found as being significant 225 

in beyond 90% of the whole-brain exploratory analyses (i.e. high level of spatial consistency 226 

of significant findings). As the size of the subsamples decreased, the shape of the distribution 227 

also changed, and the median of the density plots fell around 50% and even 10% for samples 228 

consisting of 232 and 138 individuals, respectively.  229 
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Similar results, though with much lower percent of consistently overlapping voxels, were 230 

seen for negative associations of BMI with GMV. The density plots and the spatial maps of 231 

Figure 1B show that for the larger samples (consisting of 326 and 232 subjects) few voxels 232 

were consistently found in “all”  (100%) subsamples as having significant negative 233 

association with BMI. For the smaller samples (with 138 participants) the maximum 234 

replicable association was found in 93% of the splits and 4 out of 100 exploratory analyses 235 

did not result in any significant clusters (Table 1). Additionally, as Figure 2B shows, the 236 

majority of significant voxels had a replicability bellow 50%. 237 

These results highlight the influence of sample size on the replicability (frequency of overlap) 238 

of whole-brain significant associations, even for age and BMI, for which we expected more 239 

stable associations with morphological properties of the brain.  240 

Structural associations of the psychological scores: In contrast, for most of the psychological 241 

scores, only few of the 100 discovery subsamples yielded significant clusters. Table 1 and 242 

supplementary Table 2 show the number of splits for which the exploratory whole-brain SBB-243 

analysis resulted in at least one significant positively or negatively associated cluster for each 244 

score. These results reveal that finding significant SBB-associations using the exploratory 245 

approach in healthy individuals is highly unlikely for most of the psychological variables. 246 

Furthermore, the significant findings were spatially very diverse, that is, spatially overlapping 247 

findings were very rare.  248 

We here retained for further analyses the three psychological scores for which the discovery 249 

samples most frequently resulted in at least one significantly associated cluster. These three 250 

scores were the Perceptual reasoning score of WASI (Wechsler, 1999), the number of correct 251 

responses in word-context test and the interference time in the color-word interference task. 252 

For example, for the discovery samples of 326 adults, in 83 out of 100 randomly generated 253 

discovery samples, at least one cluster (not necessarily overlapping) showed a significant 254 

positive association between perceptual reasoning and GMV (Table 1)). Of note, these more 255 
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frequently found associations were in the direction linking better task performance with 256 

higher GMV.  257 

Yet again, in line with our observations for BMI associations, the probability of finding at 258 

least one significant cluster tend to decrease in smaller discovery samples (see Table 1). 259 

Likewise, as the discovery sample size decreased, the maximum rate of spatial overlap, as 260 

denoted by the height of the density plots, decreased (see Figure 1C-F). The width of these 261 

plots show that the majority (> 50%) of the significant voxels spatially overlapped only in less 262 

than 10% of the discovery samples. In the same line, the variability depicted by the spatial 263 

maps highlight that many voxels are found as significant only in one out of 100 analyses.  264 

These results highlight that finding a significant association between normal variations on 265 

behavioral scores and voxel-wise measures of GMV among healthy individuals is highly 266 

unlikely, for most of the tested domains. Furthermore, they underscore the extent of spatial 267 

inconsistency and the poor replicability of the significant SBB-associations from exploratory 268 

analyses.  269 

--------Table 1 --------- 270 

--------figure1--------- 271 

Confirmatory ROI-based SBB-replicability: 272 

Age and BMI effects: Irrespective of the size of the test subsamples and definition used to 273 

identify “successful” replication (see Methods), for all ROIs negative age-GMV associations 274 

were “successfully” replicated in the matched test samples. Unlike the perfect replication of 275 

age-associations, replication rate of BMI effects depended highly on the test sample size and 276 

the criteria used to characterize “successful” replication. Over all three tested sample sizes, in 277 

more than 90% of the a-priori defined ROIs, BMI associations were found to be in the same 278 

“direction” in the discovery and test samples (i.e. replicated based on “sign” criteria). The 279 

examination of replicated findings based on “statistical significance” revealed replicated 280 

effects in more than 57% of ROIs. This rate of  ROI-based replicability increased from ~57% 281 
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to 75%, as the test sample size increased from 140 to 328 individuals (see figure 2). 282 

Furthermore, as the dark blue segments in the outer layers of figure 2 indicates, Bayesian 283 

hypothesis testing revealed moderate-to-strong evidence for H1 in more than 30% of the 284 

ROIs. 285 

--------figure2 --------- 286 

Psychological variables: Figure 2 also illustrates the replicability rates of structural 287 

associations of the top three psychological measures from the whole brain analyses (the 288 

perceptual reasoning score of WASI, the number of correct responses in word-context test and 289 

the interference time in the color-word interference task).   290 

Despite the structural associations of perceptual reasoning score being in the same direction 291 

(positive SBB-association), for the majority of the ROIs (>85%), less than 31% of all ROIs 292 

showed replicated effects based on “statistical significance” criterion. Finally, less than 4% of 293 

the ROIs were identified as “successfully replicated” based on the Bayes factors. (Figure 2).  294 

For the three tested samples sizes, associations of the word-context task were in the same 295 

direction (positive SBB-association) in the discovery and test pairs in ~75% of ROIs. 296 

Nevertheless, again, the rate of statistically “significantly”-replicated ROIs ranged between 17 297 

to 26%. Furthermore, even less than 8% of all ROIs showed replicated effects based on the 298 

Bayes factors (moderate-to-strong evidence for H1) (Figure 2).   299 

Finally, negative correlations between interference time of the color-word interference task 300 

and average GMV were depicted in ~70 % of the ROIs, but significant-replication was found 301 

in only 11% to 17% of all ROIs, for the three test sample sizes. Along the same line, 302 

replication based on the Bayes factors was below 5% (Figure 2E). 303 

In general, these results show the span of replicability of structural associations from highly 304 

replicable age-effects to very poorly replicable psychological associations. They also 305 

highlight the influence of the sample size, as well as the criteria that is used to define 306 

successful replication on the rate of replicability of SBB-effects in independent samples. 307 
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Effect size in the discovery sample and its link with effect size of the test sample and actual 308 

replication: 309 

Figure 3 plots discovery versus replication effect size (i.e. correlation coefficient) for each 310 

ROI and for three test sample sizes. Focusing on by-“sign” replicated ROIs (blue), for the 311 

three psychological scores (perceptual reasoning, word-context and CWI) revealed that the 312 

discovery samples resulted in overall larger effects (magnitude) compared to the test samples. 313 

Indeed, the marginal distributions are centered around smaller correlation coefficients in the 314 

y-dimension (test sample) compared to the x-axis (discovery samples). Furthermore, for these 315 

by-“sign” replicated ROIs, there was no positive relationship between the effect sizes of the 316 

behavioral associations in the discovery and test samples (blue lines in each subplot).  317 

For BMI and age, however, the effect sizes of the discovery and test pairs were generally 318 

positively correlated, suggesting that the ROIs with greater negative structural association 319 

with BMI (or age) in the discovery sample, also tended to show stronger negative associations 320 

within the matched test sample.  321 

To investigate if the replication power, estimated using the correlation coefficient within the 322 

discovery samples, was linked to a higher probability of actual replication in the test samples, 323 

the ROIs were grouped into replicated and not-replicated, based on the “statistical 324 

significance” criterion. While the estimations of statistical power were generally higher 325 

among the replicated compared to not-replicated ROIs for BMI associations (p-value of the 326 

Mann-Whitney U tests < 10
-5

), for structural associations of the psychological scores, this was 327 

not the case. Strikingly, for the structural associations of perceptual reasoning, over all sample 328 

sizes, the significantly replicated ROIs tended to have lower estimated power compared to the 329 

ROIs that actually were not-replicated (p-value of the Mann-Whitney U tests < 10
-5

). These 330 

unexpected findings highlight the unreliable aspect of effect size estimations of SBB-331 

associations within the discovery samples among healthy individuals. They also demonstrate 332 
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that these inflated effect sizes result in flawed and thus uninformative estimated statistical 333 

power.  334 

--------figure3 --------- 335 

 336 

Structural associations of total immediate recall score in ADNI cohort: 337 

Replicability of “whole brain exploratory associations”: 338 

Within the sample of patients from ADNI-cohort, 84 out of the 100 whole-brain exploratory 339 

analyses resulted in at least one significant cluster showing a positive association between the 340 

immediate-recall score and GMV. In the healthy population, however, the same score resulted 341 

in a significant cluster in only less than 10% of exploratory analyses, for any of the three 342 

discovery sample sizes (supplementary Table 2 and supplementary Figure 1).  343 

As could be seen in the spatial maps of Figure 4, significant associations in the ADNI cohort 344 

were found across several brain regions including the bilateral lateral and medial temporal 345 

lobe, the lateral occipital cortex, the precuneus, the superior parietal lobule, the orbitofrontal 346 

cortex and the thalamus. Although most of the significant voxels were found by less than 10% 347 

of the splits, some voxels in the bilateral hippocampus were found to be significantly 348 

associated with the recall score in more than 70% of the subsamples (peak of spatial overlap; 349 

see Figure 4A, B). 350 

 Confirmatory ROI-based SBB-replicability: 351 

Figure 4D shows the rates of “successful replication” of associations between the immediate-352 

recall score and GMV within each ROI in the independent, matched-samples. As the most 353 

inner layer shows, in more than 94% of ROIs, GMV correlated positively with the recall score 354 

in the test subsamples, corroborating the “sign” of the association in the paired-discovery 355 

samples. These correlations were significant in 72% of all ROIs. Furthermore, in more than 356 

50% of all ROIs the correlations in the test sample supported, at least moderately, the link 357 

between higher GMV and higher recall score (using the Bayes factors).  358 
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 Association between discovery and replication effect size: 359 

The marginal histograms in Figure 4C suggest that overall the correlations in the discovery 360 

samples are slightly stronger than the correlations in the paired replication samples. When 361 

looking at the ROIs that were successfully replicated (by-sign), there was a positive 362 

association between the discovery and replication effect size (spearman’s rho = 0.38, p-value 363 

< 10
-11

) . 364 

Finally, the median replication power was higher among “significantly replicated” ROIs, 365 

compared to not replicated (defined using “statistical significance criterion”) ROIs (p-value of 366 

the mann-whiteney U test < 10
-3

). These results showed the superior, yet not perfect, 367 

replicability of SBB-associations within the clinical population (see supplementary Figure 2 368 

for structural associations of immediate recall within healthy cohort). The observed somewhat 369 

robustness of the findings in ADNI suggest that, when the population under study shows clear 370 

variations in both brain structural markers and psychological measurements, such as the 371 

patient group in ADNI cohort,  the associations between brain structure and psychological 372 

performance could be relatively reliably characterized. Nevertheless, again, the occurrence of 373 

not-replicated results highlight the importance of confirmatory analyses for a robust 374 

characterization of brain-behavior associations. 375 

 376 

--------figure4 --------- 377 

378 
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Discussion: 379 

Our empirical investigation of the replicability of SBB in healthy adults showed that 380 

significant associations between psychological phenotype and GMV are not frequent when 381 

probing a range of psychometric variables with an exploratory approach. Where significant 382 

associations were found, these associations showed a poor replicability.  383 

In the following, we first discussed implications of the very low rate of significant findings 384 

revealed by the exploratory approach. We then discussed the possible causes of the observed 385 

spatial variability of SBB-associations. Those pattern of findings are then compared with the 386 

pattern observed in the clinical cohort. Finally, in line with the replication literature in 387 

psychological sciences and neurosciences (Button et al., 2013; Poldrack et al., 2017; Turner et 388 

al., 2018), we devoted our last section to sample size and power issues in SBB studies in 389 

healthy adults and proposed some recommendations. 390 

Infrequent significant SBB associations in healthy individuals: Importance of reporting null 391 

findings 392 

According to the scientific literature, associations between psychological phenotype 393 

(cognitive performance and psychological trait) and local brain structure are not uncommon 394 

(Kanai and Rees, 2011). However, in our exploratory analyses, when looking at a range of 395 

psychological variables, significant associations with GMV were very rare. It is worth noting 396 

that here by having a-priori fixed analysis design and inference routines, we aimed to avoid 397 

“fishing” for significant findings (Gelman and Loken, 2014). Flexible designs and flexible 398 

analyses routines (Simmons et al., 2011) as well as p-hacking (John et al., 2012) are 399 

considered as inappropriate but frequent research practices (Poldrack et al., 2017). Based on 400 

our findings of infrequent significant SBB-associations, we could assume that flexible 401 

analyses routines, p-hacking and most importantly publication bias (Dwan et al., 2013) have 402 

contributed to the high number of significant SBB-reports in the literature. 403 
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When considering potential impacts of biased SBB-reports on our confidence of 404 

psychological measures, as well as our conception and apprehension of brain-behavior 405 

relationships and psychological interindividual differences, we would strongly argue for null 406 

findings reports. Such reports would contribute to a more accurate and balanced apprehension 407 

of associations between differences in psychological phenotype and brain morphometric 408 

features, but it would also help to progressively disentangle factors that mediate or modulate 409 

the relationship between brain structure and behavioral outcomes.  410 

Poor spatial overlap of SBB across resampling: possible causes and recommendations 411 

In addition to the low likelihood of finding “any” significant SBB-association using the 412 

exploratory approach, clusters that do survive the significance thresholding did not often 413 

overlap in different subsamples. Furthermore, the probability of spatial overlap further 414 

dropped as the number of participants in the subsamples decreased (Figure 1). Putting this 415 

finding in light of the literature brings two main hypotheses. 416 

First, from the conceptual level, we could hypothesize that the pattern of correlation between 417 

a psychological measure is by nature spatially diffuse at the brain level. Psychological 418 

measures aim to conceptually articulate behavioral functions and processes, thus, in most 419 

cases, they have not been developed to identify specific localized brain functions. Following 420 

this philosophical segregation between psychological sciences and neurosciences,  it is now 421 

widely acknowledged that there is no one-to-one mapping between behavioral functions and 422 

brain regions (Anderson, 2015; Genon et al., 2018; Pessoa, 2014). Instead, mapping a 423 

psychological concept to brain features usually result in a diffuse brain spatial pattern with 424 

small effect sizes (Bressler, 1995; Poldrack, 2010; Tononi et al., 1998). From this axiom, we 425 

can expect that several studies conducted in small samples (specifically after rigorous 426 

corrections for multiple comparisons) are likely to each capture a partial and minor aspect of 427 

the whole true association pattern, resulting in a poor replication rate for each individual study 428 

(i.e. high type II error).  429 
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Alternatively, a more parsimonious hypothesis is a methodological one questioning the truth 430 

or validity of the found significant associations hence considering them as spurious (i.e. type I 431 

error). Psychological and MRI measurements are both relatively indirect estimations of 432 

respectively, behavioral features and brain structural features and thus are susceptible to 433 

noise. Correlations in small samples in the presence of noise for both type of variables is 434 

likely to produce spurious significant results (Loken and Gelman, 2017) by fitting a 435 

correlation or regression between random noise in both variables.  436 

Thus, the pattern of poor spatial consistency of SBB findings could result either from factors 437 

at the object of study level, i.e. the relationship between brain and behavior, or, from factors 438 

at the measurement and analysis level. While the latter hypothesis is more parsimonious, one 439 

argument for the former hypothesis comes from the relatively substantial replications by-sign 440 

observed in our confirmatory analyses, of three top behavioral scores (see figure 2). If the 441 

significant SBB findings would be purely driven by noise in the data, we would expect them 442 

to show purely random signs across resampling, which was not the case (but also see 443 

Supplementary figure S2 for example of scores with lower replicability and higher 444 

inconsistent associations across resampling). Therefore, it is actually likely that both 445 

hypotheses hold true and that the spatial variability of significant SBB findings result from 446 

both, factors at the analyses levels and factors at the object level, potentially interacting 447 

together.  448 

It is worth noting that similar complexity and uncertainty have been described for task-based 449 

functional associations studies (Cremers et al., 2017; Turner et al., 2018). In particular, 450 

Cremers et al. (2017) using simulated and empirical data demonstrated that task-based 451 

functional activations have a generally weak and diffuse pattern. Therefore, these authors 452 

concluded that most whole-brain analyses in small samples, specifically when combined with 453 

stringent correction for multiple comparison, to control the false positive rates, would most 454 

likely frequently overlook global meaningful effects and depict results with poor replicability 455 



 19 

(type II error). Relatedly, in the present study, higher spatial extent and lower consistency of 456 

significant findings in smaller samples in Figure 1, also suggest higher number of spurious 457 

associations (type I error) in smaller samples (due to winners curse (Button et al., 2013; 458 

Forstmeier and Schielzeth, 2011)) than in larger samples.  459 

These factors, added to the complexity of human behavior, renders the objective of capturing 460 

covariations with psychometric variables in brain structure locally particularly challenging. 461 

For that reason, in exploratory studies whose aim is to identify brain structural features 462 

correlating with a specific (set of) psychological variable(s), a multivariate approach could be 463 

advised (Habeck and Stern, 2010; McIntosh and Mišić, 2013). As mentioned earlier, like all 464 

methods, multivariate analyses have their own limitations: in particular, the ensuing difficulty 465 

of interpretability of the revealed pattern. While some authors argue either for one or the other 466 

approach, the use of these approaches are far from being mutually exclusive (Moeller and 467 

Habeck, 2006). Combining both approaches in small datasets indeed revealed that the results 468 

of the univariate approach reflect the “tip of the iceberg” of the behavior’s brain correlates, 469 

whose spatial extent are more comprehensively captured with the multivariate analysis, but 470 

interpretability is facilitated by the use of univariate analyses; e.g. (Genon et al., 2016, 2014).  471 

Thus, to partially address the previously described concerns of small and spatially diffuse 472 

effects at the brain level in exploratory whole-brain-behavior study, we here recommend for 473 

the future studies to combine a univariate and a multivariate approach. Although it does not 474 

provide any protection against the influence of noise that may affect both approaches, this 475 

solution may help to reduce the false negatives.  476 

Confirmatory replication of exploratory SBB findings: importance of out of sample 477 

replication  478 

ROI-based analysis further highlighted that significant associations, which have been 479 

discovered when starting with a psychological measure and searching within the whole brain 480 

for a significant association (i.e. “evidenced in an exploratory study”), show poor replicability 481 
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(using significance and Bayes factor criteria, but also using a similar sign criterion for most 482 

psychometric scores; For example, see Supplementary Figures S1 and S2.) in a confirmatory 483 

ROI-based study (in line with what was previously shown by Boekel et al. (2015)). These 484 

findings thus call for a general acknowledgment of the uncertainty and fragility of exploratory 485 

findings and the need for out of sample confirmatory replications to provide evidence about 486 

the robustness of the reported effects (Ioannidis, 2018; Tukey, 1980).  487 

Further factors influencing replicability of SBB-findings: power of replication and object of 488 

study 489 

Another clear finding of our study is the overestimation of the effect size in the exploratory 490 

approach (Kriegeskorte et al., 2010), specifically in smaller samples (see marginal 491 

distributions of the x- and y-axis in Figure 3). For the majority of the psychological scores, in 492 

the ROI-based approach, we failed to find a clear association between effect size in the 493 

discovery and replication samples. Instead, we observed a rather high estimated statistical 494 

power for replication (due to an inflated effect size estimation (Ioannidis, 2008)), despite very 495 

low actual rate of replicated effects in the independent samples. These findings are 496 

particularly important when considering the current research context, in which power analyses 497 

are encouraged to justify the allocation of financial and human investment in specific future 498 

researches. Prospective studies with power analyses are frequently proposed, where power is 499 

computed based on the findings from previous exploratory analyses in a small sample (Albers 500 

and Lakens, 2018a). An inflated effect size estimation from the exploratory study results in an 501 

unreliable high power, which in turn lead to confidence in prospective studies to find relevant 502 

findings and hence in the allocation and possibly waste of (frequently public) resources 503 

(Albers and Lakens, 2018b; Poldrack et al., 2017). Nevertheless, this provocative conclusion 504 

does not imply that SBB studies should be banished to hell. Our conclusion here mainly 505 

concerns the study of association between variations at standard psychological measures and 506 

variations in measures of gray matter in “small” samples of healthy individuals. Our results 507 
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further show that different types of SBB exploratory studies should not be epistemologically 508 

all put in the same pot.  509 

In support for this argument, in ADNI sample, despite the additional confounding effect of 510 

different scanners and/or scanning parameters due to the multi-site nature of the cohort, 511 

associations between immediate-recall score and GMV were relatively stable. Compared to 512 

associations of the same measure of verbal learning performance within the healthy 513 

population (see supplementary Figure 1), these results highlight the superior reliability of 514 

SBB-associations that are defined in a clinical context. These findings have important 515 

conceptual implications. From an epistemological and conceptual point of view, our 516 

comparative investigation suggests that the object of study matters in the replicability of SBB. 517 

Searching for correlation between variations in cognitive performance and GMV in healthy 518 

adults, on one hand, and in neurodegenerative patients, on the other hand, appear as two 519 

different objects of study, with different replicability rates. While several SBB results in 520 

healthy population are likely to be spurious (see supplementary Table 2), it seems that SBB in 521 

clinical population are more likely to capture true relationships.  522 

Thus, maybe the conceptual objective itself should be questioned: should we expect the 523 

association between normal psychological phenotype, in particular cognitive performance, in 524 

healthy population to be substantially driven by local brain macrostructure morphology? 525 

Brain structure can certainly not be questioned as the primary substrates of  behavior and 526 

more than a century of lesion studies recalls this primary principle to our attention (Broca, 527 

1865; Scoville and Milner, 1957), but this does not imply that “normal” variations at standard 528 

psychological tests can be related to variations in markers of local brain macrostructure. Our 529 

results suggest that reliable answer to this important question requires substantially big 530 

samples (bigger than those used here) and independent replications.  531 

Further recommendation: Large sample sizes are important both for exploratory as well as 532 

replication analyses 533 
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The sample size and related power issues hold a central position in the current discussions of 534 

the replication crisis in behavioral sciences, as well as in neuroimaging studies (Button et al., 535 

2013; Ioannidis, 2005; Lilienfeld, 2017; Munafò et al., 2017; Open Science Collaboration, 536 

2015). Higher power is defined as increased probability of finding effects that are genuinely 537 

true. Furthermore, high power experiments have higher positive predictive values (PPV) of 538 

the claimed effects (i.e. probability that the claimed effect reflects a true effect). They also 539 

result in less exaggerated effects sizes when a true effect is discovered (Button et al., 2013). 540 

As such, in the discovery sample, by increasing the sample size, the correlation coefficients 541 

get closer to their real value and their PPV increases. However, in the current study, as the 542 

number of participants in the main sample is limited, the size of the discovery and their 543 

matched replication samples are dependent on each other. Therefore, for each behavioral 544 

measure, larger discovery samples have smaller replication counterparts. These smaller 545 

replication samples have in turn lower power to find the true effects and have lower PPV. 546 

However, in splits with larger replication samples, as the discovery sample gets smaller, apart 547 

from the lower PPV, the estimated correlation coefficients are possibly more exaggerated 548 

(e.g. due to winner’s curse) (Cremers et al., 2017) and thus the power of the replication would 549 

be over-estimated. This is a limitation which complicates the interpretation of the relationship 550 

between the calculated replication power and the actual rate of replicability of associations in 551 

the present study. We hoped that the use of a large cohort of healthy individuals as our main 552 

cohort would result in large enough discovery and test cohorts and thus minimize the impact 553 

of above-mentioned limitation. However, large discrepancies between the rate of “significant” 554 

within-split replicability and the a-priori estimated replication power, as we observed in the 555 

ROI-based confirmatory analyses, confirms an exaggerated power estimation in most of our 556 

analyses and thus highlights the insufficiency of the size of the discovery and replication 557 

samples. 558 
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Thus overall, these findings  suggest that samples consisting of ~200-300 participants have in 559 

reality still low power to identify reliable SBB-associations among healthy participants. 560 

However, the sample size of SBB studies is usually substantially smaller. Figure 5 depicts the 561 

distribution of sample sizes (log-scale) of published studies examining GMV in human 562 

participants with the standard voxel-based morphometry approach across previous years 563 

(BrainMap data (Vanasse et al., 2018)). SBB studies in healthy adults also fall under this 564 

general trend. Based on our current work, we would argue that the probability of finding 565 

spurious or inconclusive results and exaggerated effect size estimations in these studies is thus 566 

quite high (Albers and Lakens, 2018b; Schönbrodt and Perugini, 2013; Yarkoni, 2009).  567 

In addition, to underscore the importance of the sample size, our analyses and results further 568 

show that the size of the replication sample also matters when examining the replicability of a 569 

previous SBB findings. This is an obvious factor that has been frequently neglected in the 570 

discussions about replication crisis. Yet, while many replication studies straightforwardly 571 

blame the sample size of the original studies, it is important to keep in mind that a replication 572 

failure might also come from a too small sample size of the replication study (Muhlert and 573 

Ridgway, 2016).  574 

--------figure5 --------- 575 

Limitations: 576 

When interpreting our results, it should be noted that, in order to keep large sample sizes for 577 

the exploratory replication analyses, the discovery subsamples were not necessarily designed 578 

to be independent from each other. Considering this limitation, the poor spatial consistency of 579 

the whole brain exploratory associations that we observed for almost all the behavioral scores 580 

is hence even more alarming. As discussed earlier, another indirect limitation of the limited 581 

size of the selected cohort is the dependence between the size of the discovery and their 582 

matched replication sub-samples. This limitation prevents us to state strong conclusions about 583 

the relationship between the calculated replication power and the actual rate of replicability. 584 
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Overall, these acknowledged limitations raise the need for even larger sample sizes for such 585 

investigations. Recent advancements through data collection from much larger number of 586 

participants, such as UK-biobank (Miller et al., 2016) are promising opportunities for 587 

overcoming these limitations in future replication studies.  588 

Moreover, the generalizability of our results are partly limited to our methodological choices 589 

such as the computation of volumetric markers of brain structure (as opposed to surface-based 590 

markers), the size of the smoothing kernel, and the use of a priori-defined ROIs in the 591 

replication sample. Future studies should therefore investigate to which extend our 592 

replicability rates are reproduced with different data preprocessing pipelines and analyses 593 

approaches.  594 

Summary and conclusions 595 

Overall, our work and review of the recent and concomitant replication literature in related 596 

fields demonstrate that several improvements could be recommended to get more accurate 597 

insight on the relationship between psychological phenotype and brain structure and to 598 

progressively answer open questions. Importantly, our recommendations and suggestions 599 

concern different levels of SBB researches: the dataset level, the analyses level, as well as at 600 

the post-publication and replication level. 601 

At the dataset level, our study pointed out the need for big data samples to identify robust 602 

associations between psychological variables and brain structure, with sample size of at least 603 

several hundreds of participants. It should be acknowledged that this conclusion is easier to 604 

achieve than to implement in research practice. Nevertheless, large scale cohort datasets from 605 

healthy adult populations, such as eNKI used in the current study, human connectome project 606 

(HCP) (Van Essen et al., 2013) and UK-biobank (Miller et al., 2016) are now openly 607 

available, hence facilitating endeavor in that direction.  608 

At the analysis level, we recommend the combined use of multivariate analyses, for 609 

comprehensive assessment of the spatial extent of associations and, univariate analyses, to 610 
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facilitate interpretability, when studying brain structural correlates of psychological measures. 611 

Furthermore, we emphasis on the importance of independent confirmatory replications to 612 

provide evidence about the robustness of the effects. 613 

Finally, at the post-analysis level, we concluded from our observations that publication of null 614 

findings should be more encouraged. In addition to directly shaping a more objective picture 615 

of SBB-associations, these null-reports could contribute to new quantitative approaches. In 616 

particular, meta-analyses of published literature (Vanasse et al., 2018) would clearly benefit 617 

from such unbiased reports of null findings.  618 

Sharing raw data would undoubtedly improve the problem of low statistical power, but if not 619 

possible, sharing the unthresholded statistical maps (e.g. through platforms such as 620 

Neurovault (Gorgolewski et al., 2015)) could also be a significant scientific contribution. In 621 

addition to directly contribute to our understanding of brain-behavior relationship, such 622 

efforts would open up new possibilities for estimating the correct size and extent of effects by 623 

integrating unthresholded statistical maps in the estimation of the effects sizes throughout the 624 

brain. Thus, we could hope that sharing initiatives will also contribute indirectly to more valid 625 

and insightful SBB studies in the remote future and hence to a better allocation of resources.  626 

 627 

628 
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Methods: 629 

Participants:  630 

Healthy adults’ data were selected from the enhanced NKI (eNKI) Rockland cohort (Nooner 631 

et al., 2012). Data collection received ethics approval through both the Nathan Klein Institute 632 

and Montclair State University. Written informed consent was obtained from all participants. 633 

We focused only on participants for which good quality T1-weighted scans was available 634 

along with timewise-corresponding psychological data. Exclusion criteria consisted of alcohol 635 

or substance dependence or abuse (current or past), psychiatric illnesses (eg. Schizophrenia) 636 

and current depression (major or bipolar). Furthermore, we excluded participants with 637 

missing information on important confounders (age, gender, education) or bad quality of 638 

structural scans after pre-processing, resulting in a total sample of 466 healthy participants 639 

(age: 48 ± 19, 153 male). 640 

Replicability of SBB-associations within the clinical sample was investigated using a 641 

subsample drawn from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, 642 

which was launched in 2003 as a public–private partnership and led by Principal Investigator 643 

Michael W. Weiner. The primary goal of ADNI has been to test whether serial magnetic 644 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 645 

and clinical and neuropsychological assessment can be combined to measure the progression 646 

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date 647 

information, see www.adni-info.org. 648 

We used the baseline measurements from 371 patients (age : 71 ± 7, 200 male ; 47 with 649 

significant memory complaint, 177 early MCI, 85 late MCI and 62 AD patients (defined 650 

based on ADNI diagnostic criteria, see http://adni.loni.usc.edu/wp-content/themes/freshnews-651 

dev-v2/documents/clinical/ADNI-2_Protocol.pdf), in whom anatomical brain scans had been 652 

acquired in a 3Tesla scanner (from 39 different sites).  653 

 654 
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Phenotypical measurements: 655 

Non-psychological measurements:  656 

Age and body mass index (BMI) are highly reliably assessed and their association with brain 657 

morphology has been frequently examined in previous studies on healthy adults (Fjell et al., 658 

2014; Kharabian Masouleh et al., 2016; Salat et al., 2004; Willette and Kapogiannis, 2014). 659 

Accordingly, they served here as the initial benchmarks among which SBB framework was 660 

tested in healthy individuals. In order to avoid large clusters that simultaneously cover several 661 

cortical and subcortical regions, we focused on local peaks of associations by increasing the 662 

voxel-level t-threshold of the statistical maps. The modified voxel-level t-threshold was set to 663 

8 and 3, for defining age- and BMI-associated clusters, respectively. These arbitrary 664 

thresholds were chosen such that the very large clusters would divide into smaller ones, while 665 

still retaining the general spatial pattern of the significant regions. 666 

Psychological measurements:  667 

The psychological measurements consisted in standard psychometrics and 668 

neuropsychological tests. The testing included: the attention network task (ANT) probing 669 

attention sub-functions (Fan et al., 2002), the Delis-Kaplan testing battery assessing different 670 

aspects of executive functions (Delis et al., 2001) (including trail-making test, color-word 671 

interference task, verbal fluency, 20 questions, proverbs and word-context task) , the Rey 672 

auditory verbal learning task (RAVLT) (Schmidt, 1996) assessing verbal memory 673 

performance, as well as the WASI-II intelligence test (Wechsler, 1999). Psychological 674 

phenotyping also included anxiety (state and trait) (Spielberger et al., 1970) and personality 675 

questionnaires (McCrae and Costa, 2004) in the eNKI cohort. For each test, we used several 676 

commonly derived sub-scores to assess the replicability of their structural associations. For 677 

each psychological measure, participants whose performance deviated more than 3 standard 678 

deviation (SD) from mean of the whole sample were considered as outliers and thus were 679 

excluded from further analysis (See supplementary Table 1). 680 
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The list-learning task is a common measure of verbal learning performance and has been 681 

implemented using the same standard tool (RAVLT) in both the eNKI and the ADNI cohort. 682 

Previous studies have shown that the immediate-recall score (sum of recalled items over the 683 

first 5 trials) could be reliably predicted from whole brain MRIs in AD patients (Moradi et al., 684 

2017). Since this score is a standard measure commonly used in healthy and clinical dataset 685 

and its relations to brain structure in clinical data has been previously suggested, in the current 686 

work we performed SBB with this score in the ADNI cohort as a “conceptual benchmark”. 687 

MRI acquisition and preprocessing:  688 

The imaging data of the eNKI cohort were all acquired using a single scanner (Siemens 689 

Magnetom TrioTim, 3.0 T). T1-weighted images were obtained using a MPRAGE sequence 690 

(TR = 1900 ms; TE = 2.52 ms; voxel size = 1 mm isotropic).  691 

ADNI, on the other hand, is a multisite dataset. Here we selected a subset of this data, which 692 

has been acquired in a 3.0 T scanner (baseline measurements from ADNI2 and ADNI GO 693 

cohort) from 39 different sites; see http://adni.loni.usc.edu/methods/documents/ for more 694 

information. 695 

Both datasets were preprocessed using the CAT12 toolbox (Gaser and Dahnke, 2016). 696 

Briefly, each participant’s T1-weighted scan was corrected for bias-field inhomogeneities, 697 

then segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 698 

(Ashburner and Friston, 2005). The segmentation process was further extended for accounting 699 

for partial volume effects (Tohka et al., 2004) by applying adaptive maximum a posteriori 700 

estimations (Rajapakse et al., 1997). The gray matter segments were then spatially normalized 701 

into standard (MNI) space using Dartel algorithm (Ashburner, 2007) and further modulated. 702 

The modulation was performed by scaling the normalized gray matter segments for the non-703 

linear transformations (only) applied at the normalization step.  While this procedure ignores 704 

the volume changes due to affine transformation, it allows preserving information about 705 

individual differences in local gray matter volume. In other words, it re-introduces individual 706 

http://adni.loni.usc.edu/methods/documents/
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differences in local gray matter volume removed in the process of inter-subject registration 707 

and normalization. Finally modulated gray matter images were smoothed with an isotropic 708 

gaussian kernel of 8 mm (full-width-half-maximum).  709 

 710 

Statistical analysis:  711 

SBB-associations are commonly derived in an exploratory setting using a mass-univariate 712 

approach, in which a linear model is used to fit interindividual variability in the psychological 713 

score to GMV at each voxel. Inference is then usually made at cluster level, in which groups 714 

of adjacent voxels that support the link between GMV and the tested score are clustered 715 

together.  716 

Replicability of thus-defined associations could be assessed by conducting a similar whole-717 

brain voxel-wise exploratory analysis in another sample of individuals and comparing the 718 

spatial location of the significant findings that survive multiple comparison correction, 719 

between the two samples. Alternatively, replicability could be assessed, using a confirmatory 720 

approach, in which only regions showing significant SBB-association in the initial 721 

exploratory analysis, i.e. regions of interest (ROIs), are considered for testing the existence of 722 

the association between brain structure and the same psychological score in an independent 723 

sample. The latter procedure commonly focuses on a summary measure of GMV within each 724 

ROI and tests for existence of the SBB-association in the direction suggested by the initial 725 

exploratory analysis. Thus this approach circumvents the need for multiple comparison 726 

correction and therefore increases the power of replication.  727 

Here we assessed replicability of associations between each behavioral measure and gray 728 

mater structure, using both approaches: the whole brain replication approach and the ROI 729 

replication approach, which are explained in details in the following sections. 730 

 731 

Replicability of whole brain exploratory SBB-associations: 732 
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 733 

Whole-brain GLM analyses: 100 random subsamples (of same size) were drawn from the 734 

main cohort (eNKI or ADNI). Hereafter, each of these subsamples is called a “discovery 735 

sample”. In each of these samples, SBB-associations were identified using the voxel-wise 736 

exploratory approach after controlling for confounders. This was done by using the general 737 

linear model (GLM) as implemented in the “randomise” tool 738 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise), with 1000 permutations. Age, sex and 739 

education were modeled as confounders in the eNKI data. As the ADNI dataset is a multi-site 740 

study, we further added site and disease category as dummy-coded confounders to GLMs for 741 

the analyses in that dataset. Inference was then made using threshold-free cluster 742 

enhancement (TFCE) (Smith and Nichols, 2009), which unlike other cluster-based 743 

thresholding approaches does not require an arbitrary a-priori cluster forming threshold. 744 

Significance was set at P < 0.05 (extent threshold of 100 voxels).  745 

Spatial consistency maps and density plots: To quantify the spatial overlap of significant SBB 746 

associations over 100 subsamples, spatial consistency maps were generated. To do so, the 747 

binarized maps of all clusters that showed significant association in the same direction 748 

between each psychological score and GMV were generated (i.e. voxels belonging to a 749 

significant cluster get the value “1” and all other voxels were labeled “0”) and added over all 750 

100 subsamples. These aggregate maps denote the frequency of finding a significant 751 

association between the behavioral score and GMV, at each voxel. Accordingly, a voxel with 752 

value of 10 in the aggregate map has been found to be significantly associated with the 753 

phenotypical score in 10 out of 100 subsamples. Density plots were also generated to 754 

represent the distribution of values within each such map, i.e. the distribution of “frequency of 755 

significant finding”. Hence, the spatial voxel-wise “significance overlap maps” as well as 756 

density plots of the distribution of values within each map give indications of the replicability 757 

of “whole brain exploratory SBB-associations” for each psychological score.   758 
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 759 

Replicability of SBB-associations using confirmatory ROI-based approach: 760 

ROI-based confirmatory analyses: The replicability of the SBB associations was also 761 

evaluated with the ROI-based confirmatory approach. For each of the 100 discovery 762 

subsamples, an age- and sex-matched “test sample” was generated from the remaining 763 

participants of the main cohort. In the clinical cohort the discovery and test pairs were 764 

additionally matched for “site”. In this analysis, for each psychological variable, the 765 

significant clusters from the above-mentioned exploratory approach from every “discovery 766 

sample” were used as a-priori ROIs. Average GMV over all voxels within the ROI was then 767 

calculated for each participant in the respective “discovery“ and “test” pair subsamples. 768 

Within each subsample, association between the average GMV and the psychological variable 769 

was assessed using ranked-partial correlation, controlling for confounding factors. The 770 

correlation coefficient was then compared between each discovery and test pair, providing 771 

means to assess “ROI-based SBB replicability” rates for each psychological score. 772 

Accordingly, each ROI was examined only once, to identify if associations between average 773 

GMV in this ROI and the psychological score from the discovery subsample could be 774 

confirmed in the paired test sample. Replicability rates were quantified according to different 775 

indexes (see below) over all ROIs from 100 discovery samples, yielding a percentage of 776 

“successfully replicated” ROIs based on each index. 777 

Indexes of replicability: 778 

Sign: First, we used a lenient definition of replication, in which we compared only the sign of 779 

correlation coefficients of associations within each ROI between the discovery and the 780 

matched-test sample. Accordingly, any effect that was in the same direction in both samples 781 

(even if very close to zero) was defined as a “successful” replication.  782 

Statistical Significance: Another straightforward method for evaluating replication simply 783 

defines statistically significant effects (e.g. p-value < 0.05) that are in the same direction as 784 
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the original effects (from the discovery sample) as  “successful” replication. This criteria is 785 

consistent with what is commonly used in the psychological sciences to decide whether a 786 

replication attempt “worked” (Open Science Collaboration, 2015). Yet, a key weakness of 787 

this approach is that it treats the threshold (p < 0.05) as a bright-line criterion between 788 

replication success and failure. Furthermore, it does not quantify the decisiveness of the 789 

evidence that the data provides for and against the presence of the correlation (Boekel et al., 790 

2015; Wagenmakers et al., 2015). However, such an estimation can be provided by using the 791 

“Bayes factors”.   792 

Bayes Factor: To compare the evidence that the “test subsample” provided for or against the 793 

presence of an association (H1 and H0, respectively), we additionally quantified SBB-794 

replication within each ROI, using Bayes factors (Jeffreys, 1961). Similar to Boekel et al. 795 

(2015), here we used the adjusted (one-sided) Jeffry’s test (Jeffreys, 1961) based on a uniform 796 

prior distribution for the correlation coefficient. As we intended to confirm the SBB-797 

associations defined in the discovery subsamples, the alternative hypothesis (H1) in this study 798 

was considered one-sided  (in line with Boekel et al. (2015)). We used implementation of the 799 

Bayes Factors for correlations from the R function available at 800 

http://www.josineverhagen.com/?page_id=76.  801 

To facilitate the interpretation, Bayes factors (BF) were summarized into four categories as 802 

illustrated in the bar legend of Figure 2. A BF01 lower than 1/3 shows that the data is three 803 

times or more likely to have happened under H1 than H0. Accordingly, this value defines the 804 

“successful”  replication. 805 

Investigation on factors influencing replicability of SBB-associations among healthy 806 

individuals: 807 

Sample size: In order to study the influence of sample size on the replicability of SBB-808 

associations, for each psychological measure, the healthy sample (eNKI) was divided into 809 

discovery and test pairs at three different ratios: 70% discovery and 30% test, 50% discovery 810 

http://www.josineverhagen.com/?page_id=76
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and 50% test and finally 30% discovery and 70% test. As mentioned earlier, in each case, the 811 

discovery and test counterparts were randomly generated 100 times in order to quantify the 812 

replication rates. For example, to assess the replicability of brain structural associations of 813 

age, in the case of “70% discovery and 30% test”, the entire NKI sample (n = 466) was 814 

divided into a discovery group of n = 326 participants and an age- and sex-matched test pair 815 

sample of n = 138 and this split procedure was repeated 100 times. Similarly, for generating 816 

equal-sized discovery and test subsamples, 100 randomly generated age and sex matched 817 

split-half samples were generated from the main NKI cohort.  818 

Due to the multi-site structure of the ADNI cohort, when generating unequal sized discovery 819 

and test samples, we did not achieve a good simultaneous matching of age, sex and site, while 820 

trying to maintain samples sizes in each subgroup reasonably large. Thus, in this cohort, we 821 

did not directly study the influence of the sample size and the replicability rates were only 822 

quantified for equal sized discovery and test samples (187 participants matched for age, sex 823 

and site between discovery and test pairs).  824 

Effect size: Furthermore, to study the influence of the effect size on the replication rates, we 825 

focused on the effect sizes within each a-priori ROI in the discovery samples.  Here we tested 826 

the following two assumptions:  827 

1) ROIs with larger effect sizes in the discovery sample result in larger effect sizes in the test 828 

sample pairs (i.e. positive association between effect size in the discovery and test samples).  829 

2) ROIs with larger effect sizes in the discovery sample are more likely to result in a 830 

“significant” replication in the independent sample. 831 

To test the first assumption, in the “ROI-based SBB-replicability” the association between 832 

effect size in the discovery and test pairs were calculated for each psychological measure. 833 

These associations were calculated separately for the replicated (defined using “sign” 834 

criterion) and not-replicated ROIs. We expected to find a positive association between 835 

discovery and confirmatory effect sizes, for the “successfully replicated effects”.  836 
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To test the second assumption, for each ROI, we calculated its replication statistical power 837 

and compared it between replicated and not-replicated ROIs (here replication was defined 838 

using “Statistical Significance” criterion). The statistical power of a test is the probability that 839 

it will correctly reject the null hypothesis when the null is false. In a bias-free case, the power 840 

of the replication is a function of the replication sample size, real size of the effect and the 841 

nominal type I error rate (). In this study, the replication power was estimated based on the 842 

size of the effects as they were defined in the discovery sample and a significant threshold of 843 

0.05 (one-sided) and was calculated using “pwr” library in R (https://www.r-project.org).  844 

These analyses were performed for each discovery-test split size, separately (i.e. 70%-30%, 845 

50%-50% and 30%-70% discovery-test sample sizes, respectively). 846 

  847 
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Figure legends: 1098 

Figure 1. Replicability of exploratory results within healthy cohort. Frequency of spatial 1099 

overlap (density plots and aggregate maps) of significant findings from exploratory analysis 1100 

over 100 random subsamples are depicted for few behavioral score. For each score, columns 1101 

show the results of three different discovery sample sizes (i.e. when discovery cohorts are 1102 

generated from 70%, 50% or 30% of the main sample, from left to right respectively (x-axis)). 1103 

The density plots show the distribution of values within their corresponding aggregate map. 1104 

The y-axis depicts the frequency of spatial overlap (in %) and the density plots show the 1105 

distribution of values within their corresponding aggregate maps. In addition to age and BMI 1106 

(A,B), which are used as benchmarks, the top three behavioral scores with the highest 1107 

frequency of overlapping findings are depicted (C-E). Within each density plot, the box-plot 1108 

shows the quartiles and extent of the distribution and the white dot depicts the median of 1109 

percentage of overlap. On the spatial maps, lighter colors denote higher number of samples 1110 

with a significant association at the respective voxel. BMI : body mass index; CWI : color-1111 

word interference; n = number of participants within the discovery samples. 1112 

Figure 2. ROI-based confirmatory replication results within healthy cohort. Donut plots 1113 

summerising ROI-based replication rates (% of ROI) using three different critera for three 1114 

different sample sizes among heathy participants. The most inner layers depict replication 1115 

using “sign” only (blue: replicated, orange: not replciated). The middle layers define 1116 

replication based on similar “sign” as well as “statistical significance” (i.e. p < 0.05) (blue: 1117 

replicated, orange: not replciate). The most outer layers define replication using “bayes 1118 

factor” (blue: “moderate-to-string evidece for H1, light blue: anecdotal evidence for H1; light 1119 

orange: anecdotal evidence for H0, orange: “moderate-to-string evidece for H0 ); 1120 

Figure 3. Discovery versus replication effects sizes: Scatter plots of correlation 1121 

coefficients in the discovery versus replication sample for all ROIs from 100 splits within 1122 

healthy cohort; each point denotes one ROI, which is color-coded based on its replication 1123 
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status (by-“sign”). The size of each point is proportional to its estimated statistical power of 1124 

replication. Regresion lines are drawn for the replicated and unreplicated ROIs, separately. 1125 

Figure 4. Replicability of positive association between immediate-recall and GMV 1126 

within ADNI cohort. A, B: Replicability of exploratory results: Frequency of spatial 1127 

overlaps (density plot and aggregate maps) over 100 random subsamples. Within the density 1128 

plot, the box-plot shows the quartiles and extent of the distribution and the white dot depicts 1129 

the median of percentage of overlap. C, D: ROI-based confirmatory replication results: C: 1130 

Original versus replication effects sizes (correlation coefficient) for all ROIs from 100 splits; 1131 

points are color-coded based on their replciation status (by-“sign”)  and size of each point is 1132 

proportional to the estimated statistical power of replication. Regresion lines are drawn for the 1133 

replicated and unreplicated ROIs, separately. D: Donut plots summerising ROI-based 1134 

replicability rates using three different critera. The most inner layer depicts replicability using 1135 

“sign” only (blue: replicated, orange: not replciated). The middle layer, defines replication 1136 

based on similar “sign” as well as “statistical significance” (i.e. p < 0.05) (blue: replicated, 1137 

orange: not replciate). The most outer layer reflects replicability using bayes factor ” (blue: 1138 

“moderate-to-string evidece for H1, light blue: anecdotal evidence for H1; light orange: 1139 

anecdotal evidence for H0, orange: “moderate-to-string evidece for H0 ); Discovery and 1140 

replication samples have equal size (n = 184) and are matched for age, sex and site. 1141 

Figure 5. box-plots showing distribution of sample sizes (log-scale) of VBM studies  by their 1142 

publication year (data from the BrainMap database; see (Vanasse et al., 2018)). Each box 1143 

shows the quantiles (25% and 75%) of the distribution and the gray horizontal line within 1144 

each box, depicts the median of the distribution. 1145 
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Table 1. Summary of exploratory findings. For each discovery sample size, the number of clusters in which gray matter volume  is positively or negatively associated with the 1146 
tested phenotypic or psychological score is reported. The number of splits (out of 100) in which the clusters were detected are noted in parentheses (i.e. % of splits with at least 1147 
one significant cluster [in the respective direction]) 1148 

Healthy cohort 

n_discovery = 70% n_total n_discovery = 50% n_total n_discovery = 30% n_total 

# positively 

associated clusters 

(split%) 

# negatively 

associated clusters 

(split%) 

# positively 

associated clusters 

(split%) 

# negatively 

associated clusters 

(split%) 

# positively 

associated clusters 

(split%) 

# negatively 

associated clusters 

(split%) 

Age (years) 

n-total = 466 
77 (54%) 154 (100%) 5 (4%) 522 (100%) 1 (1%) 1781 (100%) 

BMI (kg/m2) 

n-total = 466 
0 1741 (100%) 0 2276 (100%) 0 1937 (96%) 

Perceptual IQ (sum of t-

scores) 

n-total = 466 

499 (83%) 0 256 (58%) 0 145 (33%) 0 

Word-context (# of 

consecutively correct) 

n-total = 262 

337 (80%) 0 159 (47%) 0 80 (21%) 0 

CWI (interference) (sec) 

n-total = 449 
0 163 (53%) 1 (1%) 122 (39%) 6 (1%) 60 (26%) 

Clinical cohort - n_discovery = 50% n_total - 

RAVLT (# total 

immediate recall) 
- - 309 (84%) 0 - - 

Abbreviations: BMI : body mass index; IQ : intelligence quotient, CWI: color-word interference task; RAVLT : Rey auditory verbal learning task;  1149 
 1150 
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Supplementary material: 1151 

Supplementary File 1: Including Table S1, Table S2; 1152 

Supplementary Tables legends: 1153 

Table S1. Distribution of the raw phenotypical and psychological scores in the whole sample. 1154 

Table S2. Summary of the exploratory findings. For each discovery sample size, the number 1155 

of clusters in which gray matter volume is positively or negatively associated with the tested 1156 

psychological score is reported. Number of splits (out of 100) in which the clusters were 1157 

detected are noted in parentheses. 1158 

Supplementary Figures (Figure S1, Figure S2) legends: 1159 

Figure S1. Summary of replication of positive associations between immediate-recall 1160 

and GMV within healthy cohort. A: Frequency of spatial overlap (density plots and 1161 

aggregate maps) of significant findings from exploratory analysis over 100 random 1162 

subsamples. Columns show results of three different discovery sample sizes (i.e. when 1163 

discovery cohorts are generated from 70%, 50% or 30% of the main sample, from left to right 1164 

respectively (x-axis)). The density plots show distribution of values within their 1165 

corresponding aggregate map. The y-axis depicts frequency of spatial overlap (in %) and the 1166 

density plots show distribution of values within their corresponding aggregate map. On the 1167 

spatial maps, warmer colors denote higher number of samples with a significant association at 1168 

the respective voxel. B: ROI-based confirmatory replication results: Top row : Donut plots 1169 

summerising ROI-based replicability rates (% of ROI) using three different critera for three 1170 

different sample sizes. The most  inner layers depict replicability using “sign” only (blue: 1171 

replicated, orange: not replciated). The middle layers define replication based on similar 1172 

“sign” as well as “statistical significance” (i.e. p < 0.05) (blue: replicated, orange: not 1173 

replciate). The most outer layers reflects replicability using bayes factor ” (blue: “moderate-1174 

to-string evidece for H1, light blue: anecdotal evidence for H1; light orange: anecdotal 1175 

evidence for H0, orange: “moderate-to-string evidece for H0 ); Bottom row: Scatter plots of 1176 
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effect sizes (correlation coefficient) in the discovery versus replication sample for all ROIs 1177 

from 100 splits within healthy cohort; Points are color-coded based on their replciation status 1178 

(by-“sign”)  and size of each point is proportional to the estimated statistical power of 1179 

replication. Regresion lines are drawn for the replciated and unreplicated ROIs, separately. 1180 

Figure S2. ROI-based confirmatory replication results for five personality subscores 1181 

within healthy cohort. Donut plots summerising ROI-based replication rates (% of ROI) 1182 

using three different critera for three different sample sizes among heathy participants. The 1183 

most inner layers depict replication using “sign” only (blue: replicated, orange: not 1184 

replciated). The middle layers define replication based on similar “sign” as well as “statistical 1185 

significance” (i.e. p < 0.05) (blue: replicated, orange: not replciate). The most outer layers 1186 

define replication using “bayes factor” (blue: “moderate-to-string evidece for H1, light blue: 1187 

anecdotal evidence for H1; light orange: anecdotal evidence for H0, orange: “moderate-to-1188 

string evidece for H0 ); 1189 
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